(X+1)(x-1)=2(x^2-13)

Simple and best practice solution for (X+1)(x-1)=2(x^2-13) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+1)(x-1)=2(x^2-13) equation:



(X+1)(X-1)=2(X^2-13)
We move all terms to the left:
(X+1)(X-1)-(2(X^2-13))=0
We use the square of the difference formula
X^2-(2(X^2-13))-1=0
We calculate terms in parentheses: -(2(X^2-13)), so:
2(X^2-13)
We multiply parentheses
2X^2-26
Back to the equation:
-(2X^2-26)
We get rid of parentheses
X^2-2X^2+26-1=0
We add all the numbers together, and all the variables
-1X^2+25=0
a = -1; b = 0; c = +25;
Δ = b2-4ac
Δ = 02-4·(-1)·25
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10}{2*-1}=\frac{-10}{-2} =+5 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10}{2*-1}=\frac{10}{-2} =-5 $

See similar equations:

| 7^3x=54 | | 13x+4=90 | | 2-2x-12=x-5x+6 | | m/2-15=40 | | H=-16x^2+1000 | | 43+15x=-2 | | 9x+3=7x+31 | | -8=w+6 | | (4x-1)(x+4)=10 | | 2x-7(3×+1)=5(5-3x) | | 2(5y+8)=16 | | 2=-3x-13 | | 8=x^2/3 | | 6-5x=3+2x | | -3x-3(5x-7)=-12 | | 49=3w+4w | | x2+-1=5x | | z/14=19 | | 3b-b-2b=5 | | 2x+2x+2x+2x=360 | | s+17=34 | | 7p-9=4p-22 | | 3x(1+x)=90 | | 2x+4+62=33 | | 3(x+2)-3(x+1)=8 | | (65x-12)+(43x+10)=360 | | 73=27^x | | 55×204=m | | 7/z=7 | | x×5+3=33 | | x5+3=33 | | 3.2x+4.5x+3-2=-2.2x |

Equations solver categories